Menu Close

Stanford computer scientist and electrical engineer designed hybrid chips with processors and memory to run AI on battery-powered devices

Smartwatches and other battery-powered electronics would be even smarter if they could run AI algorithms. But efforts to build AI-capable chips for mobile devices have so far hit a wall—the so-called “memory wall” that separates data processing and memory chips that must work together to meet the massive and continually growing computational demands imposed by AI.

“Transactions between processors and memory can consume 95 percent of the energy needed to do machine learning and AI, and that severely limits battery life,” said computer scientist Subhasish Mitra, senior author of a new study published in Nature Electronics.

Now, a team that includes Stanford computer scientist Mary Wootters and electrical engineer H.-S. Philip Wong has designed a system that can run AI tasks faster, and with less energy, by harnessing eight hybrid chips, each with its own data processor built right next to its own memory storage.

This paper builds on the team’s prior development of a new memory technology, called RRAM, that stores data even when power is switched off—like flash memory—only faster and more energy efficiently. Their RRAM advance enabled the Stanford researchers to develop an earlier generation of hybrid chips that worked alone. Their latest design incorporates a critical new element: algorithms that meld the eight, separate hybrid chips into one energy-efficient AI-processing engine.

READ more: Team creates hybrid chips with processors and memory to run AI on battery-powered devices

 

Leave a Reply

Your email address will not be published. Required fields are marked *